UP Board Solutions for Class 10 Maths Chapter 15 Probability (प्रायिकता)
These Solutions are part of UP Board Solutions for Class 10 Maths. Here we have given UP Board Solutions for Class 10 Maths Chapter 15 Probability.
प्रश्नावली 15.1 (NCERT Page 337)
प्र. 1. निम्नलिखित कथनों को पूरा कीजिएः
(i) घटना E की प्रायिकता + घटना ‘E नहीं’ की प्रायिकता = ………. है।
(it) उस घटना की प्रायिकता जो घटित नहीं हो सकती ……….. है। ऐसी घटना ………… कहलाती है।
(iii) उस घटना की प्रायिकता जिसका घटित होना निश्चित है ………….. है। ऐसी घटना ……………… कहलाती है।
(iv) किसी प्रयोग की सभी प्रारंभिक घटनाओं की प्रायिकताओं का योग …………….. है।
(v) किसी घटना की प्रायिकता’ ………….. से बड़ी या उसके बराबर होती है तथा ……………… से छोटी या उसके बराबर होती है।
हलः
(i) घटना E की प्रायिकता + घटना ‘E नहीं’ की प्रायिकता = 1 है।
(ii) उस घटना की प्रायिकता जो घटित नहीं हो सकती 0 है। ऐसी घटना असम्भव घटना कहलाती है।
(iii) उस घटना की प्रायिकता जिसका घटित होना निश्चित है 1 है। ऐसी घटना निश्चित घटना कहलाती है।
(iv) किसी प्रयोग की सभी प्रारंभिक घटनाओं की प्रायिकताओं का योग 1 है।
(v) किसी घटना की प्रायिकता 0 से बड़ी या उसके बराबर होती है तथा 1 से छोटी या उसके बराबर होती है।
प्र. 2. निम्नलिखित प्रयोगों में से किन-किन प्रयोगों के परिणाम समप्रायिक हैं? स्पष्ट कीजिए।
(i) एक ड्राइवर कार चलाने का प्रयत्न करता है। कार चलना प्रारंभ हो जाती है या कार चलना प्रारंभ नहीं होती है।
(ii) एक खिलाड़ी बास्केटबॉल को बास्केट में डालने का प्रयत्न करती है। वह बास्केट में बॉल डाल पाती है या नहीं डाल पाती है।
(iii) एक सत्य-असत्य प्रश्न का अनुमान लगाया जाता है। उत्तर सही है या गलत होगा।
(iv) एक बच्चे का जन्म होता है। वह एक लड़का है या एक लड़की है।
हलः
(i) जब एक ड्राइवर एक कार को चलाने का प्रयत्न करता है तो कार चलना प्रारंभ करती है या नहीं भी चलती है। अत: इस प्रयोग का परिणाम समप्रायिक नहीं है।
(ii) खिलाड़ी बास्केटबॉल को बास्केट में डाल भी सकती है या नहीं भी डाल पाती है। अत: यह प्रयोग समप्रायिक नहीं है।
(iii) एक सत्य या असत्य प्रश्न के उत्तर के विषय मे हमें पहले ही पता है कि परिणाम दो में से एक का ‘उत्तर के रूप में आना निश्चित है।
अतः इस प्रयोग का परिणाम समप्रायिक है।
(iv) किसी बच्चे के जन्म के विषय में लड़का या लड़की का होना निश्चित होता है।
अतः इस परिणाम को समप्रायिक कहते हैं।
प्र. 3. फुटबॉल के खेल को प्रारंभ करते समय यह निर्णय लेने के लिए कि कौन-सी टीम पहले बॉल लेगी, इसके लिए सिक्का उछालना एक न्यायसंगत विधि क्यों माना जाता है?
हलः जब ‘एक सिक्का उछाला जाता है, तो यह दो में से केवल एक संभावित दशा में धरती पर गिरेगा (चित या पट)। प्रत्येक दशा में परिणाम (चित या पट) ही संभावित है। अर्थात् परिणाम (चित या पट) समप्रायिक है। अतः सिक्का उछालना एक न्यायसंगत विधि मानी जाती है।
प्र. 4. निम्नलिखित में से कौन सी संख्या किसी घटना की प्रायिकता नहीं हो सकती?
(A)
(B) -1.5
(C) 15%
(D) 0.7
हलः चूंकि किसी घटना E की प्रायिकता P(E) सदैव
0 ≤ P(E) ≤ 1
(A) 0 <
यह किसी घटना की प्रायिकता नहीं हो सकती है।
(C) चूंकि 0 < 15% <1
15%, किसी घटना की प्रायिकता हो सकती है।
(D) 0 < 0.7 < 1 है।
यह किसी घटना की प्रायिकता हो सकती है।
प्र. 5. यदि P(E) = 0.05 है, तो ‘E नहीं’ की प्रायिकता क्या है?
हलः चूंकि
P(E) + P(E नहीं) = 1
0.05 + P(E नहीं) = 1
P(E नहीं) = 1- 0.05 = 0.95
अतः (E नहीं) की प्रायिकता 0.95 है।
प्र. 6. एक थैले में केवल नीबू की महक वाली मीठी गोलियाँ हैं। मालिनी बिना थैले में झाँके उसमें से एक गोली निकालती है। इसकी क्या प्रायिकता है। कि वह निकाली गई गोली
(i) संतरे की महक वाली है?
(ii) नीबू की महक वाली है?
हलः
(i) चूंकि थैले में सभी गोलियाँ नींबू की महक वाली हैं अर्थात् थैले में से एक संतरे की महक वाली गोली निकालना एक असंभवं घटना है।
P(सन्तरे की महक वाली गोली) = 0
(ii) चूंकि थैले में सभी गोलियाँ नींबू की महक वाली हैं।
थैले में से एक नींबू की महक वाली गोली निकालना एक निश्चित घटना है।
P(नीबू की महक वाली गोली) = 1
प्र. 7. यह दिया हुआ है कि 3 विद्यार्थियों के एक समूह में से 2 विद्यार्थियों के जन्मदिन एक ही दिन में होने की प्रायिकता 0.992 है। इसकी क्या प्रायिकता है कि इन 2 विद्यार्थियों का जन्मदिन एक ही दिन हो?
हलः माना 2 विद्यार्थियों का एक ही दिन जन्मदिन होने की घटना E है।
माना 2 विद्यार्थियों का एक ही दिन जन्मदिन नहीं होने की घटना E है।
चूंकि P(E) + P(E नही) = 1.
परन्तु
P(E नही) = 0.992
P(E नही) + 0.992 = 1
P(E नही) = 1 – 0.992 = 0.008
अत: 2 विद्यार्थियों का एक ही दिन जन्मदिन होने की घटना की प्रायिकता 0.008 है।
प्र. 8. एक थैले में 3 लाल और 5 काली गेंदें हैं। इस थैले में से एक गेंद यादृच्छया निकाली जाती है। इसकी प्रायिकता क्या है कि गेंद
(i) लाल हो?
(ii) लाल नहीं हो?
हलः थैले में गेंदों की कुल संख्या = 3 + 5 = 8
थैले में से एक गेंद निकालने की घटना के सभी संभव परिणामों की संख्या = 8
प्र. 9. एक डिब्बे में 5 लाल कंचे, 8 सफेद कंचे और 4 हरे कंचे हैं। इस डिब्बे में से एक कंचा यादृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि निकाला गया कंचा
(i) लाल है?
(ii) सफेद है?
(iii) हरा नहीं है?
हलः डिब्बे में कंचों की संख्या = 5 लाल कंचे + 8 सफेद कंचे + 4 हरे कंचे = 17 कंचे।
डिब्बे में से एक कंचा निकालने की घटना के सम्भव परिणामों की संख्या = 17
(i) लाल गेंदों की संख्या = 5
डिब्बे में से निकाली गई गेंद का लाल होने की घटना के परिणामों की संख्या = 5
अनुकूल परिणामों की संख्या = 5
अनुकूल परिणामों की संख्या = 5
(ii) सफेद गेंदों की संख्या = 8
डिब्बे में से सफेद गेंद निकाली जाने की घटना के परिणामों की संख्या = 8
अनुकूल परिणामों की संख्या = 8
प्र. 10. एक पिग्गी बैंक (piggy bank) में, 50 पैसे के सौ सिक्के हैं, 1 के पचास सिक्के हैं, 2 के बीस सिक्के और 5 के दस सिक्के हैं। यदि पिग्गी बैंक को हिलाकर उल्टा करने पर कोई एक सिक्का गिरने के परिणाम समायिक हैं, तो इसकी क्या प्रायिकता है कि वह गिरा हुआ सिक्का
(i) 50 पैसे का होगा?
(ii) 5 का नहीं होगा?
हलः पिग्गी-बैंक में कुल सिक्कों की संख्या = 50 पैसे के सिक्के + 1 के सिक्के + 2र के सिक्के + 5 के सिक्के
= 100 + 50 + 20 + 10 = 180
पिग्गी बैंक से सिक्का निकलने की घटना के परिणामों की संख्या = 180
(i) 50 पै. के सिक्कों की संख्या = 100
पिग्गी बैंक से 50 पैसे का सिक्का गिरने की घटना की संख्या = 100
प्र. 11. गोपी अपने जल-जीव कुंड (aquarium) के लिए एक दुकान से मछली खरीदती है। दुकानदार एक टंकी, जिसमें 5 नर मछली और 8 मादा मछली हैं, में से एक मछली यादृच्छया उसे देने के लिए निकालती है। इसकी क्या प्रायिकता है कि निकाली गई मछली नर मछली है?
हलः मछलियों की कुल संख्या = (नर मछलियों की संख्या) + (मादा मछलियों की संख्या) = 5 + 8 = 13
कुंड में से मछली निकालने की घटना के परिणामों की कुल संख्या = 13
संभव परिणामों की संख्या = 13
चूंकि नर मछलियों की संख्या = 5
अनुकूल परिणामों की संख्या = 5
प्र. 12. संयोग (chance) के एक खेल में, एक तीर को घुमाया जाता है, जो विश्राम में आने के बाद संख्याओं 1, 2, 3, 4, 5, 6, 7 और 8 में से किसी एक संख्या को इंगित करता है। यदि ये सभी परिणाम समप्रायिक हों तो इसकी क्या प्रायिकता है कि यह तीर इंगित
(i) 8 को करेगा?
(ii) एक विषम संख्या को करेगा?
(iii) 2 से बड़ी संख्या को करेगा?
(iv) 9 से छोटी संख्या को करेगा?
हलः चूंकि विश्राम में आने पर तीर 1 से 8 तक की किसी भी संख्या को इंगित करता है।
संभव परिणामों की संख्या = 8
(i) चूंकि चक्र पर 8 का एक अंक है।
अंक 8 को इंगित करने की घटना के परिणामों की संख्या = 1
अनुकूल परिणामों की संख्या = 1
प्र. 13. एक पासे को एक बार फेंका जाता है। निम्नलिखित को प्राप्त करने की प्रायिकता ज्ञात कीजिएः
(i) एक अभाज्य संख्या
(ii) 2 और 6 के बीच स्थित कोई संख्या
(iii) एक विषम संख्या
हलः
(i) एक पासे पर अभाज्य संख्याएँ 2, 3 और 5 हैं।
माना कि घटना E” एक अभाज्य संख्या प्राप्त करना है।”
E के अनुकूल परिणामों की संख्या = 3
चूंकि पासे पर छः संख्याएँ [1, 2, 3, 45 और 6] होती हैं।
E के संभावित परिणामों की संख्या = 6
प्र. 14. 52 पत्तों की अच्छी प्रकार से फेटी गई एक गड्डी में से एक पत्ता निकाला जाता है। निम्नलिखित को प्राप्त करने की प्रायिकता ज्ञात कीजिए:
(i) लाल रंग का बादशाह
(ii) एक फेस कार्ड अर्थात् तस्वीर वाला पत्ता
(iii) लाल रंग का तस्वीर वाला पत्ता
(iv) पान का गुलाम
(v) हुकुम को पत्ता
(vi) एक ईंट की बेगम
हलः चूंकि तास की एक गड्डी में 52 पत्ते होते हैं।
एक पत्ता 52 तरीकों से निकाला जा सकता है।
प्रत्येक अवस्था में सभी संभव परिणामों की संख्या = 52
(i) माना घटना E, “लाल रंग का बादशाह प्राप्त करना है।
चूंकि एक गड्डी में लाल रंग के 2 बादशाह [1 पान (hearts) का और 1 ईंट (diamond) का]
अनुकूल परिणामों की संख्या = 2,
सभी संभव परिणामों की संख्या = 52
प्र. 15. ताश के पाँच पत्तों-ईंट का दहला, गुलाम, बेगम, बादशाह और इक्का-को पलट करके अच्छी प्रकार फेटा जाता है। फिर इनमें से यादृच्छया एक पत्ता निकाला जाता है।
(i) इसकी क्या प्रायिकता है कि यह पत्ता एक बेगम है?
(ii) यदि बेगम निकल आती है, तो उसे अलग रख दिया जाता है और एक अन्य पत्ता निकाला जाता है।
इसकी क्या प्रायिकता है कि दूसरा निकाला गया पत्ता
(a) एक इक्का है?
(b) एक बेगम है?
हलः चूंकि कुल पत्ते (दहला, गुलाम, बेगम, बादशाह और इक्का) पाँच हैं।
(i) माना घटना, E“ निकाला गया पत्ता एक बेगम है” को प्रदर्शित करता है।
कुल परिणामों की संख्या = 5
चूंकि इन पत्तों में केवल एक ही बेगम है।
अनुकूल परिणामों की संख्या = 1
(ii) चूंकि बेगम के पत्ते को निकालकर एक ओर रखने पर, हमारे पास केवल चार पत्ते बचते हैं।
सभी संभव परिणामों की संख्या = 4
(a) चूंकि चार पत्तों में केवल 1 इक्का है।
घटना, E“ निकाला गया पत्ता एक इक्का है” के लिए अनुकूल परिणामों की संख्या = 1
(b) माना घटना E, “निकाला गया पत्ता एक बेगम है” को दर्शाता है।
P(E) = 0
प्र. 16. किसी कारण 12 खराब पेन 132 अच्छे पेनों में मिल गए हैं। केवल देखकर यह नहीं बताया जा सकता कि कोई पेन खराब है या अच्छा है। इस मिश्रण में से, एक पेन यादृच्छया निकाला जाता है। निकाले गए पेन की अच्छा होने की प्रायिकता ज्ञात कीजिए।
हलः कुल पेन = [अच्छे पेनों की संख्या] + [खराब पेनों की संख्या] = [132] + [12] = 144
अतः एक अच्छा पेन निकाले जाने के 144 परिणाम हो सकते हैं।
संभावित परिणामों की संख्या = 144
माना घटना E, “एक अच्छे पेन का निकलना” है।
और अच्छे पेनों की संख्या = 132
E के अनुकूल परिणामों की संख्या = 132
प्र. 17. (i) 20 बल्बों के एक समूह में 4 बल्ब खराब हैं। इस समूह में से एक बल्ब यादृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि यह बल्ब खराब होगा?
(ii) मान लीजिए (i) में निकाला गया बल्ब खराब नहीं है और न ही इसे दुबारा बल्बों के साथ मिलाया जाता है। अब शेष बल्बों में से एक बल्ब यादृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि यह बल्ब
खराब नहीं होगा?
हलः
(i) कुल बल्बों की संख्या = 20
सम्भावित परिणामों की संख्या = 20
खराब बल्बों की संख्या = 4
अनुकूल परिणामों की संख्या = 4
माना घटना E, “निकाला गया बल्ब का खराब होना” है।
(ii) चूंकि ऊपर निकाला गया बल्ब खराब नहीं है। और इसे दुबारा बल्बों के साथ नहीं मिलाया गया है।
शेष बल्बों की संख्या = 20 – 1 = 19;
खराब बल्बों की संख्या = 4
शेष बचे बल्बों में अच्छे बल्बों की संख्या = 19 – 4 = 15
इस प्रकार, एक अच्छे बल्ब के निकलने के लिए। अनुकूल परिणामों की संख्या = 15
चूंकि शेष बचे कुल बल्ब 19 है, इसलिए सभी संभव परिणामों की संख्या = 19
माना घटना E, ‘निकाला गया बल्ब खराब नहीं है’ को प्रदर्शित करता है।
प्र. 18. एक पेटी में 90 डिस्क (discs) हैं, जिन पर 1 से 90 तक संख्याएँ अंकित हैं। यदि इस पेटी में से एक डिस्क यादृच्छया निकाली जाती है तो इसकी प्रायिकता ज्ञात कीजिए कि इस डिस्क पर अंकित होगी; (i) दो अंकों की एक संख्या
(ii) एक पूर्ण वर्ग संख्या
(iii) 5 से विभाज्य एक संख्या।
हलः पेटी में डिस्कों की संख्या = 90
एक डिस्क निकालने के 90 सम्भव परिणाम हो सकते हैं।
(i) चूंकि प्रत्येक डिस्क पर एक अंक (1 से 90 तक) अंकित हैं।
ऐसी डिस्को की संख्या जिन पर 2 अंकों वाली संख्या अंकित हैं = 90 – (1 अंक वाली संख्याएँ) = 90 – 9 = 81
1, 2, 3, 4, 5, 6, 7, 8 और 9 एक अंक वाली संख्याएँ हैं।
अनुकूल परिणामों की संख्या = 81
माना घटना E” निकाली गई डिस्क पर दो अंकों वाली संख्या का अंकित होना” है।
(ii) चूंकि 1 से 90 तक की संख्याओं में 90 पूर्ण वर्ग अर्थात् 1, 4, 9, 16, 25, 36, 49, 64 और 81 है।
अनुकूल परिणामों की संख्या = 9
माना घटना E, ‘निकाली गई डिस्क पर एक पूर्ण वर्ग अंकित होना है।
(iii) चूंकि 1 से 90 तक की संख्याओं में 5 से विभाज्य संख्याएँ:
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85 और 90 हैं।
जिनकी संख्या 18 है। माना घटना E, “निकाली गई डिस्क पर अंकित संख्या 5 से विभाज्य” है।
प्र. 19. एक बच्चे के पास ऐसा पासा है जिसके फलकों पर निम्नलिखित अक्षर अंकित हैं।
इस पासे को एक बार फेंका जाता है। इसकी क्या प्रायिकता है कि
(i) A प्राप्त हो?
(ii) D प्राप्त हो?
हलः चूंकि पासे के 6 फलकों पर अंकित अक्षर इस प्रकार हैं:
फेंके जाने पर एक अक्षर छः प्रकार से प्राप्त होता है।
सम्भव परिणामों की कुल संख्या = 6
(i) चूंकि दो फलकों पर अक्षर A अंकित है।
अक्षर A दो प्रकार से प्राप्त हो सकता है।
अनुकूल परिणामों की संख्या = 2
माना घटना E “अक्षर A का प्राप्त होना” है,
(ii) चूंकि केवल एक फलक पर अक्षर D अंकित है।
अनुकूल परिणामों की संख्या = 1
माना घटना E “अक्षर D वाला फलक प्राप्त हो” है,
प्र. 20. मान लीजिए आप एक पासे को आकृति में दर्शाए आयताकार क्षेत्र में यादृच्छया रूप से गिराते हैं। इसकी क्या प्रायिकता है कि वह पासा 1m व्यास वाले वृत्त के अंदर गिरेगा?
प्र. 21. 144 बॉल पेनों के एक समूह में 20 बॉल पेन खराब हैं और शेष अच्छे हैं। आप वही पेन खरीदना चाहेंगे जो अच्छा हो, परंतु खराब पेन आप खरीदना नहीं चाहेंगे। दुकानदार इन पेनों में से, यादृच्छया एक पेन निकालकर आपको देता है। इसकी क्या प्रायिकता है कि|
(i) आप वह पेन खरीदेंगे?
(ii) आप वह पेन नहीं खरीदेंगे?
हलः बॉल पेनों की कुल संख्या = 144
1 पेन निकालने के संभावित परिणामों की संख्या = 144
(i) चूंकि खराब पेनों की संख्या = 20
अच्छे पेनों की संख्या = 144 – 20 = 124
अनुकूल परिणामों की संख्या = 124
माना घटना E, “अच्छा पेन खरीदना” है।
प्र. 22. एक सलेटी पासे और एक नीले पासे को एक साथ फेंका जाता है। सभी संभावित परिणामों को लिखिए। इसकी क्या प्रायिकता है कि दोनों पासों की संख्याओं का योग।
(i) 8 है।
(ii) 13 है।
(iii) 12 से छोटी या उसके बराबर है।
(iv) उक्त की सहायता से निम्नलिखित सारणी को पूरा कीजिएः
(v) एक विद्यार्थी यह तर्क देता है कि ‘यहाँ कुल 11 परिणाम 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 और 12 हैं।
अतः, प्रत्येक की प्रायिकता
हलः जब नीला पासा ‘1’ दर्शाता है, तो सलेटी पासे पर संख्याओं 1, 2, 3, 4, 5, 6 में से कोई भी संख्या हो सकती है। यही
तब भी होगा, जब नीले पासे पर ‘2’, ‘3’, ‘4’, ‘5’ या ‘6’ होगा। इस प्रयोग के संभावित परिणामों को नीचे सारणी में दिया गया है। प्रत्येक क्रमित युग्म की पहली संख्या नीले पासे पर आने वाली संख्या है तथा दूसरी संख्या सलेटी पासे पर आने वाली संख्या है।
प्र. 23. एक खेल में एक रुपए के सिक्के को तीन बार उछाला जाता है और प्रत्येक बार का परिणाम लिख लिया जाता है। तीनों परिणाम समान होने पर, अर्थात् तीन चित या तीन पट प्राप्त होने पर, हनीफ खेल में जीत जाएगा, अन्यथा वह हार जाएगा। हनीफ के खेल में हार जाने की प्रायिकता परिकलित कीजिए।
हलः एक सिक्के को उछालने पर, माना चित प्राप्त होना H और पट प्राप्त होना T है।
एक सिक्के को तीन बार उछालने पर हमें निम्नांकित परिणाम प्राप्त हो सकते हैं:
प्र. 24. एक पासे को दो बार फेंका जाता है। इसकी क्या प्रायिकता है कि
(i) 5 किसी भी बार में नहीं आएगा?,
(ii) 5 कम से कम एक बार आएगा?
संकेतः एक पासे को दो बार फेंकना और दो पासों को एक साथ फेंकना एक ही प्रयोग माना जाता है।
हलः एक पासे को दो बार फेंकना या दो पासों को एक साथ फेंकना एक ही घटना है।
सभी संभव परिणाम इस प्रकार हैं:
प्र. 25. निम्नलिखित में से कौन से तर्क सत्य हैं और कौन से तर्क असत्य हैं? सकारण उत्तर दीजिए।
(i) यदि दो सिक्कों को एक साथ उछाला जाता है, तो इसके तीन संभावित परिणाम-दो चित, दो पट या प्रत्येक एक बार हैं। अतः, इनमें से प्रत्येक परिणाम की प्रायिकता
(ii) यदि एक पासे को फेंका जाता है, तो इसके दो संभावित परिणाम-एक विषम संख्या या एक सम संख्या हैं। अतः एक विषम संख्या ज्ञात करने की प्रायिकता
हुलः
(i) यह कथन असत्य है, [क्योंकि जब दो सिक्कों को एक साथ उछाला जाता है, तो ‘प्रत्येक में से एक’ दो प्रकार से परिणाम दे सकता है-पहले सिक्के से चित और दूसरे सिक्के पर पट या पहले सिके से पट और दूसरे से चित प्राप्त हो सकता है। इस प्रकार दो बार चित और दो बार पट आ सकता है] इस प्रकार प्रत्येक परिणाम की प्रायिकता
(ii) हाँ, यह कथन सत्य है।
प्रश्नावली 15.2 (ऐच्छिक) (NCERT Page 341)
प्र. 1. दो ग्राहक श्याम और एकता एक विशेष दुकान पर एक ही सप्ताह में जा रहे हैं (मंगलवार से शनिवार तक)। प्रत्येक द्वारा दुकान पर किसी दिन या किसी अन्य दिन जाने के परिणाम समप्रायिक हैं। इसकी क्या प्रायिकता है कि दोनों उस दुकान पर
(i) एक ही दिन जाएँगे?
(ii) क्रमागत दिनों में जाएँगे?
(iii) भिन्न-भिन्न दिनों में जाएँगे?
हलः यदि मंगलवार को T से, बुधवार को W से, वीरवार को Th से, तथा शनिवार को S से प्रकट करें, तो ग्राहकों श्याम और
एकता द्वारा एक विशेष दुकान पर एक ही सप्ताह (मंगलवार से शनिवार) में जाने के सभी संभव परिणाम निम्नांकित हो सकते हैं:
प्र. 2. एक पासे के फलकों पर संख्याएँ 1, 2, 2, 3, 3 और 6 लिखी हुई हैं। इसे दो बार फेंका जाता है तथा दोनों बार प्राप्त हुई संख्याओं के योग लिख लिए जाते हैं। दोनों बार फेंकने के बाद, प्राप्त योग के कुछ संभावित मान निम्नलिखित सारणी में दिए हैं इस सारणी को पूरा कीजिए।
इसकी क्या प्रायिकता है कि कुल योग
(i) एक सम संख्या होगा?
(ii) 6 है?
(iii) कम से कम 6 है?
हलः पूरा करने पर सारणी इस प्रकार है:
प्र. 3. एक थैले में 5 लाल गेंद और कुछ नीली गेंदें हैं। यदि इस थैले में से नीली गेंद निकालने की प्रायिकता लाल गेंद निकालने की प्रायिकता की दुगुनी है, तो थैले में नीली गेंदों की संख्या ज्ञात कीजिए।
हलः माना थैले में नीली गेदों की संख्या x है।
सभी संभव परिणामों की संख्या = (लाल गेंदों की संख्या) + (नीली गेदों की संख्या) = (5 + x)
यदि घटना “ थैले में से नीली गेंद निकालना” को E से व्यक्त करें, तो
E के अनुकूल परिणामों की संख्या = x
प्र. 4. एक पेटी में 12 गेंदे हैं, जिनमें से गेंद काली है। यदि इसमें से एक गेंद यादृच्छया निकाली जाती है, तो इसकी प्रायिकता ज्ञात कीजिए कि यह गेंद काली है।
यदि इस पेटी में 6 काली गेंद और डाल दी जाएँ, तो काली गेंद निकालने की प्रायिकता पहली प्रायिकता की दुगुनी हो जाती है। x का मान ज्ञात कीजिए।
हलः पेटी में गेदों की कुल संख्या = 12
सभी संभव परिणामों की संख्या = 12
अवस्था- I: यदि घटना “निकाली गई गेंद काली है” को E से व्यक्त करें, तो
E के अनुकूल परिणामों की संख्या = x [पेटी में x काली गेंदे हैं।]
प्र. 5, एक जार में 24 कंचे हैं जिनमें कुछ हरे हैं और शेष नीले हैं। यदि इस जार में से यादृच्छया एक कंचा निकाला जाता है तो इस कंचे के हरा होने की प्रायिकता
हलः चूंकि जार में 24 कंचे हैं।
सभी संभव परिणामों की संख्या = 4
माना जार में नीले कचे x हैं।
जार में हरे कंचों की संख्या = 24 – x
यदि घटना “निकाला गया कंचा हरा है” को E से व्यक्त करें, तो
E के अनुकूल परिणामों की संख्या = (24 – x)
Hope given UP Board Solutions for Class 10 Maths Chapter 15 are helpful to complete your homework.
If you have any doubts, please comment below. UP Board Solutions try to provide online tutoring for you.